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Preface to. Chapters .3 .and _4 

Chapters 3 and 4v complete Part I of this report. 

We would like to call attention to the fact that 

the informal nature, of these unpublished Technical Reports 

invites an amount of speculation which would "be perhaps-in- 

tolerable in the published literature, and a certain loose- 

ness and erudeness in derivations and formulations of prob- 

lems which a regular published work would not exhibit.  It 

seems desirable to the authors to make a statement at this 

point concerning the scope of what we know and what we do 

not know in the subject matter of these two chaptersv- 

• The reader will quickly see that the sub jeet .\ &r_ 

matter of Chapter3 is confined to the hydraulics of sharply 

stratified media, whereas real estuaries are always more or 

less diffusely stratified.  What is more, no dismission-isr 

made of the order of magnitude-of the: friction terms. : In 

rsi*^ 1npi»ir    ainnl a    ToiroT    -PI raa     lannh    pa     T n    pt-VPfflj     onjIngoTB    si — --'—'*•»»'"»»—rf     w«.^»0——    —v»j w*.     **>-•«    ^-S""»ii   «*»    •*'**   -«• — -» S*.y»     — '—to-*"-4-" " — **   Jars.-  .- — 

ready have crude approximations of the friction terms (Chezy 

and Manning formulas), but we do not have even these approxi- 

mations for two layer flow.  For this reason the differential 

equations of gradually varied flow of two layers are for the 

most part left unintegrated and all that is demonstrated is 

the qualitative aspects of the flow. 

In the case of entrainment of v.ater from one layer 

into another we can only perform integrations of the equations 

when the amount of entrainment is known, whereas in real estu- 
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aries we do not have a priori Jdfowledge .of this amount. 

The reader will see, therefore, that the subject matter 

of Chapter 3 is really very incomplete, leaving undeter- 

mined all the constants-which.depend upon turbulent mix- 

j.ngy:,upon the frictionalLis tresses on the bottom, and the 

free surface ani the walls, and upon the amount of entrain- 

;     ;; The contents of Chapter 4 are~somewhac differ^- 

ent.  First of all, they^contain summaries of several _"..:'""'... 

already: published papers on the mixing in estuaries.  Most 

• of these papers have proceeded"on 4:he^ basis of hypotheses 

about the nature of the mixing process.  The applicability 

of these hypotheses appears to be restricted to -only leer- 

Jkin': eslSaries -,' -and it must be admitted that more, worjr.has^ . 

been ^^^^^^"^^^^^#^^®s^'i^ whatJ the: mixing..^processes 

in, an estuary might be., than has been done in trying to. 

-fJnd-out what the mixing processes in an estuary actually " 

.'^--"•---.::/:./ ASLihcomplete as-the subject matter of Chapter• 4.... 

-is, it is hoped that it will suggest which of the possible 

mixing processes in estuaries may be .important in any par- 

ticular one which is-the subject of ..study,- and that it will 

also suggest the type of observations which will be post 

desirable in studying a particular estuary.  For example: 

in an unstratified estuary it seems that a more or less 

uniform.spacing of stations upand down the estuary is de- 
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Sirabie; -hut in an estuary which appears to' be 'subje^-fccr^ 

the constraint of overmi'xing. "(Section 4. 51) tho location of 

stations should.be largely confined to control sections. 
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CHAPTER 3. 

Gradually varied flow. 

3.1 The general equation of varied flow. 

We envisage a  channel whose axis is oriented along 

the 2L  a*i3> whose width is -t^S? ).  The It  axis is directed 

vertically upward.  The ^4 - axis is directed horizontally 

across the channel. 

Two layers of vertically homogeneous liquids flow 

in this channel, the lighter on top of the heavier.  The 

upper liquid, whose density is o   (^ ), has a free surface at 

2- = X   (*). 
The interface between this upper fluid and the low- 

er liquid layer, whose density is Cx   (jC ),  is at 9f = £v (?( ). 

The bottom of the channel is at yt   = jTj (?<). 

•a. x,cx) 

*_*- J^x) 

x a-*,**) 
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For convenience auxiliary quantities are intro- 

duced: 

the layer depths: 

the discharges per unit width: 

°1 = ^lul ^2 = ^2U2 

and the total discharges: 

<*1 = bqi Q2 = ^2 

The steady state equation of motion in the ^—dir- 

ection is 

The viscous term is supposed to be primarily ver- 

tical (as migho be the case in a wide channel with thin 

layers) and it is supposed that A*" the dynamic eddy viscos- 

ity, may be a function of £  .  Therefore the term jfir/*-  —• 

is used instead of the usual u.  V t*- 

The additional term —Cf('u~/   is intended to in- 

clude retarding forces such as might be due to a fine screen, 

or pilings, or long grass. 

The steady state equation of continuity is 

JL (pv») + — [?"-) +-2-(<?«*")   * o 



Now we know that the following identities hold: 

(5) 

By adding these three the last terms vanish on account of 

the continuity relation, and we may substitute the remain- 

ing terc3 of the right-hand member into the left-hand member 

of the equation of motion, obtaining the following form: 

AH +&(r^+h(r") 

-U+&(rk)'4W (6) 

We now integrate this equation vertically over each layer. 

First, over the top layer: 

i 

Section 3.1 (Page 3) ! 
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The limits £, and JL are functions of % . 

Differentiation of the following integral yields the follow- 

ing:   o pS, 

>*J 
Jk VI 

,£iK*4 -g(r*+t)li 
(6) 

The vertically integration equation of motion becomes: 

X 

*&(rx+r>L +* Sv 
(9) 

^* 

Also, we may integrate over the width of the channel hor- 

izontally along ^, and dividing the result 4+ <4J*j,  obtain 

the following expression: 
**/v 

£/<Kv)* *t»'^ 
>/ 

ttur 

A 

?, 

fv 

*, 
(10) 

<{(«•) <L± 
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At the solid side walls 

Therefore the above equation of motion becomes J 

;>; 

(ID 
^••2: 

We now study each of the two layers separately. 

Suppose that within the top layer 1{. is uniform with 3^ , 

that is, has a value we may designate as 1£ . The hydro- 

static pressure is 

?, - v(K ~*; 

Therefore 

I 

I I 
1 

: i 
, i 
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If no fluid comes through the top boundary 

113) 

or more  simply 

o 

f fjL^UX = f,«, W        - 
6% 

f tLUj- 

fx 

At  the  interface       jjj- = j^tT* I    there may  bo  some  flow 

of deep water up into  the  upper  layer,   so  that  if     £££ 

is   the  upward velocity  of water penetrating the  inter- 

face we  can write our  expression as 

/ 
<U.ur 

i. 

St 

X^L   ~*^ 

(U) 

(15) 

i I 

The  integrated  equation of motion of  the  top 

layer then  becomes: 

,». 
— ^-.-t^-c <.   - T, -Tt (16) 

where 

r;   •/"•» 
)/t^ 

*^~     2rm*, 
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In the bottom layer Px - 2 f> A "*"3 Pi L&~ "*"/ 

= rk\  -   / ^* 
This expression becomes 

(17) 
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3.2 A single fluid: effoot of friction 

Let ua first consider a. single layer of water of 

uniform density P   , and consider the surface J^_ as the 

solid bottom.  Let us suppose that there is no friotional 

stress at the free surface ( t,  * 0 ) and that there is no 

addition of water to the flow (£*£*.*•). The equation (1) 

then becomes 

£(TKt,<*+tr.?)+±%r^1>' 
i-lf.V.& — *y 

Furthermore, let us first consider a simple chan- 

nel of constant width ( obd-/*^   m6   ).  By continuity 

oLo,/iif**0  .  The equation may be written 

or *K        (2i 

The condition of flow in which ^ty/ctjL *° is 

called "uniform flow" by hydraulic engineers (Bakhmeteff, 

1932).     According to the Chezy formula for very wide channels 

1*. 

or 

, . Cr/SZ *>• * ^H; 

.  - T),C<J*L 
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where C is the Chezy resistance factor determined by empir- 

ical formulas.  We designate ti quantity J7\ "*j)t\\   as the 

conveyance 

*"7* *i 
O) 

This corresponds to the case in our formula where 

These two formulas can be reconciled if we write  "Z\ * '^j '  ' 

thus 

K*.,*-  = f1*,*- 

or . j.  jl>,3 

T of  no  oril ua  "Pr\r» «M   / 

(4) 

We thus see that the depth of the layer increases 

f\V+     f1or»T*Ooeoo r^o*\orw^-trwT     unnn      tho      o^rrn      r* "f*      Kr»fh      r\ n moyo •- *^>»     or\/^ 
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denominator.  The case where the denominator vanishes is a 

critical one; it occurs at a critical velocity of 

1L, 
"fi* 

the velocity of propagation of a long gravity wave.  If the 

stream is flowing with a velocity less than the critical one, 

(i.e., It < 1/,^  ) the flow is subcritical and the denominator 

is positive.  For supercritical flow the denominator is nega- 

tive.  It is interesting to note that for subcritical flow in 

a channel with level bottom ( $L 
S
 °   ) the effect of friction 

on the Dottom is to decrease ^, in the downstream direction 

and hence to accelerate the flow.  The gradually varied flow 

in most natural watercourses uvpears to be subcritical, and 

we will confine our attention to such regimes. 

! 

i 
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3.3 Single layer: widening the channel 

Let us now consider the effect of widening of the 

channel alone on the flow.  The equation 13.1-16) becomes 

simply 

Now by continuity 

£(<**.) -< 

Differentiation of tho equation of motion yields 

ail),   m *-   "*•    g. 

A1- 

(2) 

(3) 

The result, in subcritical flow, of a broadening in the 

channel, is to thicken the single layer. 



3. i+    Single   layer:   entrainment 

If   the  only  effect permitted   is   that mass  be 

added   lo   the   single  layer,   (i.e.    U^ -^  O    )   we  obtain 

the  following equation: 

(P,ft^+§f>~)-f» 1±X USZ*. 
I 1 \ 

This corresponds to a case where water of density &j    is 

injected into the single layer with a velocity of £^£, and 

46^ per unit width. 

By continuity 

iX, 

I  ' J_ (ft*t)*l±   -t- f3/^ 
/ J 

This is approximately 

gc*~-fi)-£ -/^ 

(2) 

(3) 

(A) 

Now going back to the eauation of motion 

III. ±. - JLL (?. ^-rt.ki) 
(5) 

^^ 
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First consider the case where &a&.    , then 

V, Iff,    ** ** (6) 

The equation for the change of J^ with %    is 

(>»•-&• 

(7) 

The result is that in subcritical flow, as long 

as the injected water is injected with a horizontal velocity, 

^W.^ ,  more  than the stre^-n^t^ , the layer will thicken. 

The next step is to compare the^e effects in some 

special cases where a bottom layer is present. 
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3.5  Pwc layers: deep bottom layer 

Suppose the ueep layer does not move at all, and 

that it does not .::ix with the upper layer.  In this case, 

equation (3.1-17) takes on a particularly simple form: 

Thus 

or 

£<flH)+*<^v (3) 

This equation essentially states that the horizontal 

pressure gradient in the bottom layer vanishes. 

We may now combine this expression with the 

equation (3.1-16) to obtain 
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or introducing 

^. 

(5) 

The  denominator defines a new  critical  velocity 

/^t A J$"^^i     w^ic*i is  considerably less  than  that for 

one   layer  flow,    <tt-c K-J^/b, .     Velocities  of  flow whose 
F1t,x 

4, * •    y  is  less  than  unity 

v:e r.ay  call  subcritical.     It is  seen  that  the  sane general 

effects  that  occur  in  the  subcritical,   one-layer  case,   ig <   ' 

occur   in  subcritical   (referred   to   f-^    )   two-layered  flow, 

except  that  the   behavior  of   the   top layer  is,   so  to  speak, 

inverted vertically. 
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3.51  Effect of entrapment 

Suppose that the lower Ic-yer is very deep, but that 

mixing occurs across the interface.  The model therefore is 

of this kind: 

(i)  The interface j2f- = SxiHj    Permits upward 

movement of deep water into the top layer where it is mixed, ! 

but no mixing downward is permitted.  Thus, p^    i3 indepen- 

dent of fl   ,   but p,^)-^/**-  as *% —^ cO   .  The mix- 

ing may be due to winds, tidal currents, or the shear devel- 

oped at the interface, but in this model it is regarded as 

fixed independently of the mean flow. 

(ii)  The depth of the top layer, -!//   is very 

much less than that of the bottom layer. 

(iii)  V/ithin the top layer mixing is so strong 

vertically that the density Qt it) , the velocity ^U,('K), 

are independent of £j . 

layer is (^K*.  .  The mass flux per unit width of the top 

layer;  j}( O *U.     ,   increases by the addition of deep water 

at the rate px u*^  so that by mass continuity the following 

relation must obtain: 

^t ^   •>     ' J (i) 
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If   the  salinity of   the   two  layers are  denoted   by   S, 

and    Sj.   »  respectively,   the  salt   transfer per  unit width 

in  the  top  layer, J)(u,5,    increases  by addition  of  salt water 

from below,  and  by conservation  of  salt  the following rela- 

tion  is  obtained: 

**"   (J>, «..«.)      =       •XSi. (2) 
sty 

If the density is simply a linear function of salinity, 

p  = f>0 ( / i~<ASj   equations (1) and (2) combine to yield 

the following form of relation: 

£(*>*,)  -"*- 

Because cf its great depth, the velocities in 

the deep layer are small, and hence the horizontal pressure 

gradient at any depth within the deep layer r.ust vanish. 

This is expressed by an earlier equation: 

i'l 
i 



M**^m^mKw~^^ 

Equation (IJ simplifies to the following form: 

^M-*[^]-w> 
13 tr     ol   T  rn T   n o  f ml no f 1 A'I    r\ 1 4 b S t*. W 6 © P onnr. Gloria      ( i    J      a r*A       f   C   t      f ^r» 

following equation is obtained 

"^f(V^. = o 
(6) 

where -/ =   £*.-/•< VA 

The meaning of equation (6) can be explained 

easily if we introduce 

(7) 

a function denoting the transport of the upper layer. 

Clearly 

•v -   %£•/* 
(8) 

w here the subscript 0 indicates values of "V and ?  at -X'O 
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The  equation   (7)   then  becoaes 

*[j£ + lit 211 - 0 

or  if 

(9 

(10) 

Changing variables 

oLD L 2< 3 -K 

^ac 3-2K 
(ID 

or if 

-£* 'W. f/K (12) 

^D /   _ 

d-Q *ffFK 

24-j_ 
4.-2. M -\) 
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The iii/r.orical values tabulated in Table 3.51.1 in- 

dicate that there is a range of •£-..' 0, f * 4r-<2. • 0    t  for 

which the depth of tue top layer decreases with increase of 

transport.  In the case of Alberni Inlet this is apparently 

what happens,  Moreover, the value of *£ increases rapidly 

after a certain value of the transport, so that evidently 

iho   two layer model breaks down where  -^*  5* «.0 

The velocity, £, of an internal wave at the in- 

terface is given by 

vD, 
# 

From equation (12) one sees that the velocity of 

the upper layer, nJ-i, is equal to C at thp value 4**Z . At 

points further upstream  *V-t    <•   C   . 

Tully has communicated to the writer the fact 

that the internal wave motions of the open sea do not seem 

t" r\     nono1-T*Qto     T n 4" o     f ho     turn    IQTOT*     nr»T»f T ^n     r> **    o     H oo T^    1 o ira-r*r>A —    t       —      „„_     „..-    —_j — _     c ___„    „..     w.    «~ £.    --^.j ~- ~~ 

estuary.  Apparently this point of critical velocity acts 

as a block to such deep ocean waves and prevents then from 

progressing into the estuary. 

This leads to an interesting result.  Ths mouth 

of the estuary will act as a control so thet<P-2. at the 

mouth.  The depth of the upper layer is a maximum at ^-=#$"^ 

this corresponds to the place where the velocity of flow is 

one half the critical velocity. 



TABLZ   3.51.1 

b 

0 

.2 

.4 

.5 

.6 

.8 

1.0 

1.2 

1.4 

1.6 

1.3 

2.0 

2.2 

3.0 

10.0 

100.0 

2b-l 
b- 
0. 

-2    1 
mi 

5 

3. 3 

0. 125 

0. 0 

-0. 25 

-0. 50 

-1. 00 

1 

75 

-3. 00 

-5. 50 

-13. 00 

- o^ 
+ «&<=> 
+13. 0 

+ 5. 0 

2. 4 

2. 01 
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3. $2 Experimental studies of entralnmer.t in a :wr layer system 

In the experimental flume it is possible to add either 

fresh or salt water to the top layer by means of a shower bath 

falling onto the free surface.  This is an artifice for increas- 

ing the discnarge of the top layer along the axis of flow.  It 

differs frnn t,he natural ent-rainnent process ir. ostuurico in 

two ways: (1) In estuaries only salt water is available for en- 

trainment, but experimentally we can add either fresh or salt 

water;  (2) In estuaries a counter-flow occurs in the deep water 

due to tne entrainment, whereas in the flume the water is added 

externally, so that it does not cause a reverse flow in the deep 

water, but such a flow can be induced by an auxiliary pump. 

Equation 3*57*// may be written in two forms depending 

on whether the entrained water is fresh or salt. 

Fresh water entrained 

Salt water entrained 

(2) 

(  I 
I ; 
i 
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These two quantities, r(R.7 and (miC^cJare given j 

in Table 3.52.1. This table is perhaps somewhat easier to use 
1 
1 

in computing. 

The results of experimental runs in the flume are 

given in Table 3.52.2. 

; i 

« 1 



! 
I       i 

1.0 
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Table  3.52.1 

V(Fc) act 
0.00 

-0.22 •0.33 

-0.50 +0.13 

-0.66 0.00 

-0.88 -0.15 

-1.34 -0.50 

-2.0 -1.00 

-3.0 -1.74 

-4.6 -2.95 

-8.0 -5o50 

-18.0 -13.00 

0 

0.1 

0.2 

0.25 

0.3 

0.4 

0.5 -2.0 -1.00 

0.6 

0.7 

0. 8 -c„ u -*?„ • 

0.9 



H 
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Table  3.52.2 

Run 

1                 2 3 

River discharge  per 
unit width cm^sec"! 15.8 31.4 31.4 11.4 ii.4 

Shower  discharge  per 
unit width cm2sec~l 7.9 12.8 12.2 11.4 11.4 

Shower Fresh or Salt S F S F S 

T>, 9.0 10.0 10.0 14.2 13.8 

».' 8.0 8.0 S.5 13.8 16.2 

R> 720 1000 1000 2850 2620 

*:* 510 510 610 2640 4250 

t> 1.009 1.005 1.004 1.009 1.009 

1.018 1.011 1.014 1.009 1.016 

V .018 .022 .023 .018 .018 

V ' .009 .016 .013 .018 .011 

      (Transition downstream) 

RT < .044 .068 .204 .004 .0049 

*' .502 .680 . 495 .0385 .0201 

*&,/& -.11 -.22 -.17 -.03 + .17 

*?•/£ .66 .64 .54 .68 .61 

(S'MWiJ -.16 -.34 -.31 -.04 + .25 

ft" 
.30 .36 .35 .021 .0110 

«R)*rflitrj -.15 .-A-00 .-.32 .-.04 .+.50 

Primes denote position downstream of shower. 
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3.53  Example of calculation of interfacial depth in a 
deep estuary dominated by entrainment.  

The salinity of the ocean off Alberni Inlet is about 

32 °/oo.  For purposes of the computation we choose the salin- 

ity of the upper layer as 30.6 °/oo at the mouth.  The channel 

is of more or less uniform width, about 1500 m.  The river 

discharge varies, but we will compute a curve for a discharge 

of 60 m-'sec  .  This corresponds to a fresh water discharge 
i 

per unit width 90   -  400 cm /sec.  The initial density dif- 

ference is taken as 7© = 0.02^.  At the mouth fc  - lO^cm /sec 

and "/^ = 0.001.  The depth at the mouth is therefore given 

by the critical interfacial Froude number re     being unity 
i 

there : 
2- 

— I 
— i 

Thus Pj = 4.65xl02cm. 

We may now compute the interfacial depths at 

various points upstream by means of equation (3.51.10): 

where the constant \^  is determined at the mouth: 

2. 
3 * Y„ D. C  -   f-?Y< e, ^c. 
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* 

A table of such computations for a few selected 

values of "A is given in Table 3.53.1.  Depths of the top 

.layer from Alberni Inlet are given as well. 
i 

By differentiation of the equation (3.51.10) it I 

is found that the maxinum depth of the interface is: 

3>.f^,)   -   '•** *«• 

and that this occurs at the station where 

In the example we are here computing 

D ,  v » 5.1 •    °*       Y' r °'°0/3 J/i (ma*)     I 

i 
i 



Table 3.53.1 
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Computation for layer depth 
in Alberni Inlet 

v, 
D, v u. / S °/oo 

.001 4.65 31.0 

.0015 5.6 30.0 

.002 5.2 29.5 

.004 3.9 27.0 

.012 2.3 16.6 

.020 1.8 6.4 

.025 .5 0.0 

Actual layer depth 
in Alberni Inlet 

3  °/oo   D-^m. )   Stat. 

H 

G 

7 

E* 

D* 

C 

B 

A 

31 4.5 

29.5 2.0 

29.0 2.0 

28 1.5 

26 4.0 

19 2.0 

11 2.2 

5 2.0 

Station is in a.  widening of the channel. 
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3.6 Salt wedge 

An interesting special case of gradually varied 

flcv: is the salt wedf;e which occurs in channels where the 
i 

depth is insufficient to permit the salt water to extend I 

throughout the whole length of the channel, so that the down- 

stream part of the channel has two layers of fluid in it, and 

the upstream part of the channel has only a fresh water layer. 

The wedge appears to be a phenomenon in which friction is more 

important than entrainment.  Moreover, it is important to dis- 

tinguish between steady salt wedges and the type of cold 

front discussed by von Karman (Non-linear engineering prob- 

lems.  Dull. Am. Math. Soc. , 46, 8, pp. 615-683).  in von 

Karman's wedge vertical velocities are important, the pressures 

are not hydrostatic, and the slope of the wedge surface is 

nearly 1:1.  The slopes of stationary wedges occurring in es- 

tuaries are likely to be more of the order 1:40 or 1:100. 

The byputhesis which is used in this section to con- 

struct a theoretical model of the 3alt wedge phenomenDn is that 

I the upper layer is turbulent, whereas the wedge itself is lam- 

inar.  We shall use equation (3.1-16) which is the equation of 

motion of the top layer vertically integrated in which there 

is no entrainment, no free surface stress, and no change in 

section of the channel. 

as. 
(i) 
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The turbulent stress on the interface is taken to be 

Tv = -k?,^ (2) 

The fluid in the wedge itselr is presumed to be governed 

by the Nuvier-Stokes equations, but the velocities are so 

small tnat the inertial terms are neglected.  (It will be 

noticed that the inertial terms are not neglected in the 

integrated form of the equation for the top layer).  The 

equation for the lower layer, then, is of the following form: 

iVr V, 
fv by v  3*v (3) 

If it is assumed that the vertical velocities are small 

and that therefore the pressure is hydrostatic, equation 

(3) may be written in the following form: 

(4) 

The stress exerted by the upper fluid on the lower fluid 

and given by equation (2) must be balanced by a viscous 

shearing stress due to the lower fluid acting on the upper. 
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We may assume that the velocity used for (2) in the 

lower layer is given by the following form: 

(6) 

in which  case equation   [U)   becomes   the  following: 

i/ 

>(*Jv 
i r w) - ^ .£t 

(7) 

and equation (5J becomes simply 

r 
-* -f2a5v -tr 

(8) 

If the velocity of .he lower layer vanishes 

at the bottom, Ct vanishes. 

Since we assume no transfer of salt water 

across the interface there must be no net flow of salt 

water across any section of the wedge. 

sVL      U%      * O 
(9) 

Evaluation of this integral results in the 

following relation: 

o = + + (10) 
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From equations (8) and (10) we can solve for tne con- 

stant C.    and substituting tnis into equation (7) we 

obtain the following tow.,  of the equation for the lower 

layer; 

*'• 
Hi) 

Llakint; use  of  the  fact   that 

(12) 

Q -   ^A (13) 

and equations (2), (1), and (11), we can eliminate all 

the variables except  X and X    so that the enuations 

are now reduced to two equations of the following form: 

[ F       I   a* 
^1> 

2> X 
--i (H) 

F  r,-rA   ^^ H'    * 
(15) 

where for convenience 

F = 
o. 
y 5, *y (16) 
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We place the origin of tne coordinate system at the head 

of the wedge and introduce the quantity £>o   which is 

given by the equation 

V = D,     aZ K-0 ,, „. 
- I * {x I ) 

".Ve then introduce a change in variable: 

57" °' S7       >     * <      *  >* (18) 

and rewrite oquatijn.3 114) and (15) in the forms 

(Mr-')—'  f JX    "       D* (19) 
I 

A 
(20) 

2>K Eliminating the quantity   A^  fron: the above equa- 

tions, we obtain 

(21) 

where r,   -     //y        ,   the interfacial Frcude number.  It 

should be noted that /f and f?  are not constants, but 

are functions of ( 5 — S^ )• 
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In order to simplify equation (21) 30 that it 

.•nay be conveniently integrated, we make the following sub- 

stitutions which i.ave been substantially verified in the 

laboratory: 

F «  I >    A, = (22) 

ilcuation   (21)   now  takes  tiie  for: 

3    k 
^2jr   -     £     Do f±   ,±) 

where /~ =  /\QD„ ,   the interfacial *'roude number 

at /K — O     .  As Az is a function of X   only, equation 

(22) may be written in integral form: 

Q^±^±kjK-i\^ (2k) 

Upon carrying out   the  prescribed  integration 

and  collecting  terms,  we  obtain as   the  final  equation 

which describes   the   profile  of  the   salt water wedge 

ko,HJL   = >i + 3.A.^(8+^)C^-^^)      (25) 

1 
1 

I   1 
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This equation involves no other assumptions than equations 

(2) and (22), and will therefore bo considered exact.  It 

is used to determine the Interfacial coefficient of fric- 

tion, JK.  . 

Unfortunately, equation (25) is very  inconvenient 

with which to work.  V«e may simplify Lhu equation in the 

following manner.  If «c f^0   is of the oraer 1/10 it nay be 

considered small compared to the number 8.  Expanding tne 

natural logarithm in series and collecting terms we obtain 

The validity of this approximate form of equation (25) may 

be checked by comparison with the experimental data. Jt   has 

been substituted for AK    in event of a shift along one of 

the axes due to the approximation. 

The interfacial Froude number, /^  , increases 

with increasing X •  As rt     cannot exceed unity (see Sec- 

tion 2.21; we rr.ay say 

Flm* 1 ± i (27) 

The condition that/^- 1  ,   tnerefore defines tne maximum 

thickness of the wedge, and permits a determination of the 

maximum length of tne wedge.  The following quantities are 
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now defined 

«T/f»/ t   x» X^    X,--^ .28) 

We ;aay determine the maximum value of A.x from the 

equation 

/?=' = 
to 

;/3D/(I-^0 ('-^W 

and therefore 

KJr*   ' * £ (29) 

Using equations (i±9), (23) and (13), we may determine 

the slope of the interface at  X = ^ 

x^^W 

(30) 
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3.61 Experimental studies of salt wedges 

The experimental salt wedges in the laboratory 

exhibit a form similar to equation (3.6.25), as shown in 

Figure 3.61.1.  The solid lines indicate the wedge profiles 

determined by the above equation.  By fitting the experi- 

mental points to tnese curves, the interfacial coefficient, 

of friction is found to equal 

Jk- O.OQ36 U) 

The theoretical curves httve been terminated at the value 

of ^_z defined by equation (3.6.29).  None of the experi- 

mental data exceeded this limit. 

In order to fit the experimental data to equation 

(3.6.26, the approximate equation, it is necessary to make 

1 r O.OOSI U) 

Figure 3.61.2 shows these results, the dashed line indica- 

ting the curve given by equation (3.6.26).  As the approxi- 

mation involved the omission of a number of terms multiplied 

by o^n.0   it is not believed that /? bears any significant 

relation to Jfc . 

The solid line in Figure 3.61.2 indicates the 

following empirical relation found prior to the foregoing 

theory 

XL= 0.IS-(±FU) (3) 
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A further check on the theoretical analysis 

would be that the velocity in the wedge be approximate- 

ly correct.  The maximum upstreaxr. velocity accurs at y$ 

and 

-^ 

"** 
£. £ 

s 
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3.7 '''he very viscous estuary 

Certain estuaries, though stratified, are so 

turbulent that the deep layer is diluted witn fresh sur- 

face water.  These estuaries (Type 2) differ from the 

deep-fjord estuary (Type 3), and river outlet (Type 4) 

in which the bottom layer is undiluted. 

Continuity principles show that whereas en- 

train.ment can occur without turbulent flux across the 

interface, turbulent flux must be accompanied by entrain- 

nent.  This and other natters are discussed in Section 

4.6. 

In this chapter the interesting feature of the 

very viscous estuary is that inertia terns may not be im- 

portant as compared to friction and pressure terms.  An 

elementary theory of such a case moy be developed as 

follows: 

TVip     ^tfnqm1/>n1      onMo-*--iono     (  1     1      1 A i     onH      t *}     1      "171 

may be simplified to the following forms if inertia terms 

are neglected. ; 

^ 
(1*) 
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where the fractional stress has been written in the form 

"Tu " /<(/U'~Ut/    .  It is convenient to write the 

equations with 9      as independent variable, and let 

Addition of these two leads to the simple re- 

sult that 

(2') 

*£> L    ^ ° (3) 

This equation simply si/tiles that, in the absence of 

bottom friction the vertically integrated pressure force 

does not vary with ^( 

Now in a Type 2 estuary, with reasonably lars;e 

value of *X)  , the term o{Px~fx)l®$i     is small compared to 

the others, and in many cases so is o Ui  /2 o9j so 

that the principal balance is in the form 

^,{f'    •>•   J u) 

• 

(2») 
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or  quite  simply 

If vvc   suppose   that  the  density   is given  by a   simple  law 

_  ... 4. V. -  — I      ) I    .   1     *• \ 

o)/, ^ 2s, • fy,-ti>J 
-   o* 

»;•        v* (6) 

From equation   (4.6.3)  we  can now write 

New  from  the  dynamical  equation   (2) 

If we  eliminate   oi>/^ft       between equations 

(Vj   and   (c)  we  obtain an  equation  giving JPt  in  terms  of 

the   observed  salinity distribution   (in a  Type  2  estuary): 

(V) 

(ft) 

I (9) 

I 
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This equation, despite its restrictions and its 

approximate nature, is very remarkable.  If we consider 

any Type 2 estuary, we can deduce the discharge f,   , or 

the non-tidal velocities, "X,, from the salinity distribu- 

tion, even though we do not know- the friction explicitly'. 

The alternate form of (9) is as follows: 

m S^M^/^-^     (9M 

An interesting corollary of the equation!9) is 

that, for large 

1 

-   ;   ;    =    f* ~ = (10> 

or, as in most Type 2 estuar ies, if   "P, = TX a~-$~ 

g^gj %±^4* /U- (10.) 
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3.71 Example.  Dynamics of a Type 2 estuary. 

Pritchard (1951) has discussed in detail the nu- 

merical magnitude of various terms in the dynamical equa- 

tion for the Janes River estuary (for the discussion of the 

salt transfer equation cf Lhe Janes, see Jection 4.61). The 

dynamical equation for the x-conponent is averaged OVRT 

time, a steady state is supposed, and the following form 

obtained: 

(1) 

>r  I By analogy to the fact that he found <K 5'    negligible, 

(Section 4.61) Pritchard infers that J^r [**'"')   is also 

negligible.  Hence, tne vertical eddy flux of momentum 

may be solved for in the form 

4t '&"    " 
ur 

(2) 

Unless the elevation of the free surface is known, 2 •••* 
J     3 X 

is  toown only with respect  to a  constant fixed ac some 

level ?h .    However, Pritchard assumes  that   ** **"     van- 

ishes at both, surface and bottom  (the  latter assumption 

being by far the wealcestj  and evaluates   li'w*'   numerically 

from equation. (2).     The results for a single station are 

jftottttrt in Figure 3-71-L> 
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.-Isure 3.71.1 The vertical eddy flux of 
horizontal momentum as a function of deptJi, 
at a sample station in the James River 
estuary* 
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4.1  Mixing processes in estuaries .. 

"Very little is known for certain about the mixing 

processes which actually occur in estuaries, so that most of 

the work done to date has been hypothetical.  These hypothet- 

ical studies are essentially an attempt to explain.the obser- 

ved distribution in the estuary of a property like salt on 

the basis of assumptions about the mixing..... . The methods of. 

the tidal prism (4.2), of mixing in segments (4.3), and of 

arbitrarily defined eddy diffusivity (4.4), are examples of 

this hypothetical approach. 

Frojxfthe practical point of view of computation 

of pollution, numerical"processes seem more likely to be of 

use than, idealized hypothetical mixing theories.  Section 

4.46 is an example of the numerical process applied to an 

unstratlfied estuary. 

An interesting feature of mixing in stratified 

estuaries is the condition of "overmixing'' which is dis- 

cussed in Sections 4.51-3»  This condition may turn out to 

be a very useful one in the study of estuaries because it 

does not depend upon the detailed nature of the mixing pro- 

cess itself. 



";.?-1 
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4.2 The tidal prism 

The first rough approximate method of determining 

the saliaity of a tidal estuary from a knowledge of the tides 

and river flow is the "tidal prism method*, long- in use  by 

engineers (Letcalf and J£ddy, 1935) in harbor studies. 

,„   1/ Denote  the   hish-tirifi  voluTne Df  ths si 

the  low  tide volume    by   \fL   »   the volume of river flow per 

tidal  cycle  by    *\   .     The  tidal  prism is defined  by 

P -   VH - VL 
: ! a 

If the river water is fresh, and the salinity of the 

ocean is O  , the salinity of the harbor is obtained by the 

assumption that on each tidal cycle a volume \   of water of 

salinity 0 'and a volume i\ of fresh water, mix thoroughly in 

the harbor, and that a volume "p* +f\     of the mixture is ex- 

pelled.  The salinity of the estuary is therefore P <T~ f \P + »\/ 

*.n the steady state. 
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4.3 Refinements of the tidal prism method 

Ketcnum (1951) has suggestec. that the primary weak- 

ness of the tidal prism method is that it assumes complete 

mixing over the entire estuary during each tidal cycle.  He 

indicated that an estuary should be divided into a number of 

segments of a length approximately the local displacement of 

the tide in each of which mixing is complete.  Before discuss- 

ing Ketclium's theory of the exchange ratio we will first dis- 

cuss various arbitrary ways of dividing the estuary into seg- 

ments, some of which may be useful in cases where estuaries 

contain several isolated basins; and show how dependent the 

results may be on the exact nature of the mixing process. 

Suppose that the estuary be divided into arbitrary 

segments, in each of which mixing is complete.  The 3ow-tide 

volumes of each of these segments are denoted by V^ , the 

high-tide volume by  hvv +" \r*~ 

The segment nt-0 is defined to be that where the 

quantity \0 ~ f\, l\ being the river discharge per tidal cy- 

cle. 

If /„ is the fractional concentration of river water 

in the nth segment at high tide, then the fractional concentra- 

tion cf sea water in each segment is /~"T*at high tide.  Let 

<l/n. be the fractional concentration of fresh water in the 

nth segment at low tide. 
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The rise of level in segment 7t s. Q   during flood 

tide may be assumed to be due entirely to river flow, thus 

X   s. \   .     Since there is no flux upstream across the seaward 

boundary of the Oth segment, ai30  9^ * / • 

We now evaluate the flux or volume and fresn water 

across both the landward and seaward boundaries of the nth 

segment: 

Volume Flux      Fresh Flux 

Ebb - Landward boundary Un, ^n   »n-l 

Seaward boundary Un-t-l ^n-M "^n 

_(U„-i?)    -(«*.-R>*'~ 

- (l>o*i -R) " ("«•• "KV',*, 
Flood - Landward boundary 

Seaward boundary 

The freshness of the water flowing in the flood tide is 

given by ^ "*- 

Let i'n-' 

1 t *o 

At high and low Volume of Total Freeh 
nth segment water in nth 

High •Pn + vn (?„^)rreat 

Low v^ V«Qi 

The first relation to be satisfied is that the 

flux of volume across each boundary be f\     each tidal cycle. 
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This is clearly so since at landward boundary: 

„«.,   - CUn+i -"^)    -"^ 

and at seaward boundary: 

(A 

The nex^ relation is that the flux of fresh water 

volume each complete tidal cycle by (A .  Thus at the land- 

ward boundary 

Unt., -(o.-K)^  -*R 
(1) 

rw •i - ^u^' -^V^y " ^ (1') 

#/*. and ^/nai-e in general different, and equal only when 

mixing is complete on low tide. As a matter of fact, the 

second equation follows from the first by induction. 

By conservation of fresh water the change In fresh 

water content during the ebb is: 

?„X -< (*+*) - »»&-> -»»+'•?» (2, 

and at the seaward boundary i 
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and during the flood is i 

i 

/„ fa +v«) > V* * " fa'*)^""'-*^' 

A number of different results may now be obtained*, 

depending upon the precise nature of the mixing process 

supposed. 

Mixing process 1.  Suppose no mixing occurs at 

low tide so that on the flood the water flowing across each 

boundary is unchanged in properties.  Formally this is equiv- 

alent to supposing that 

$/)+! TVi (3) 

Substitution of this into equation shows that for this pro- i*sl 

r> Q o c»      *-V>o     r\r\^ tr     r\r\ oo^KTp      e^oo^u     o+'o^o      ^ o      s^r>r\     < r     »»»V%</%U -^-_   ^*   I 

Mixing process 2.  Suppose mixing occurs at low 

tide and the segments are quite large so that in the limit 

If there is a certain value of <7L , say /rt *t**  which 

lies in the ocean then it is certain that there Q£*+i,  *" T*n * <* 

The values of •/*,  at segments further upstream may be cal- 

culated by equation (1). 

i 

i 

. 
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O^   Trvi-I  * "R 

(4) 

e"rc. 

then  4x»c***  and the -^L at the ntn segment is computed 

by 

Mixing process 4.  Suppose that mixing occurs 

at low tide in each segment as well as at high tide, thus 

%~    m f 
There are two relations available:  equations (1) and 

i 
(2), between which flH  and Q*,   may be eliminated, thus 

yielding a recurrence relation in *f      and *fn„t • 

There is no difficulty in satisfying the upper boundary 

between segments 0 and 1. 

Mixing process 3.  Suppose all the water that 

moves on the flood is ocean water in the form of a wedge, 

""+' A   " * c,i ! "f 

i 
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(6) 

: 

"" 

f t 

i 
! 

i    i 

- 
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4.31    Exhange Ratio 

Ketchum (1951) has introduced a special type of 

seo^entation which seems  to  this writer  to  be   the most 
'. 

reasonable "a priori" for unstratified estuaries.  In our 

notation, it consists of defining y^   in terms of the up- 
n ! 

strea/r. segments: i 
i 

V. = Un -hVo (1) 

Moreover, Ketchum has introduced a quantity f\ 

called the exchange ratio, defined in the following way: 

~ *       r„ =      T?i/teW„) <2> 

and has postulated that the total amount of fresh water 

in the nth segment at high tide is given by ths follow- 

in* relation: 

i(p„+V - ^A- 
(3) 

In our notation this is tantamount to the following deter- 

mination of 

4, •R/K (u) 



! 
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This result is different from the results of any 

of the four examples of nixing processes ^iven in Section 

4.3.  In order to illustrate these differences a very simple 

hypothetical example is worked out here. 

Example.   Consider an estuary which has segments 
/7L = 0, 1, 2, 3, but beyond these is connected to the sea. 

The segmentation is taken as being that of equation (1) 

AV 0 1 2 3 4 
ft* 1 2 2 3 Ocean 
V* 3 5 7 Ocean 
Uit 0 1 3 5 8 

Table 4.31.1 

The method of Ketchum gives the following values 
J 

of Tn by equation (4). 

£     0   12   3   4 
1 1  1/2 1/2 l/3  0       Table 4.31.2 

Mixing process 1 leads  to the result that all 

value? of Try - I 

Mixing process 2 clearly is not applicable be- 

cause the segments as given by equation (1) are clearly not 

of a size adecuate for the limit to be reached.  Mixing 

process 3 leads to the following values of T>> by equation 

(5) 

/yu    C   1   2   3   4 
f 1  1/3 1/5 1/8  0       Table 4.31.3 
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Uixiiig process  4 leads   to  the   following equation: 

(v„-v.)04-fcK-, -K-*-K)v-& -M. (51 

The value of 13 must be determined by the equation 

4.3.1, where  5 ^ * ^ 

^ 0     1     2     3     4 
(VK-^)(V,*R)    0     3     9    15 
/•(Vh-V.-R) -2048       Table 4.31.4 

RV« 2     3     5     7 
•y 1  107/135 8/15  1/8 

By using these different hypotheses regarding the 

mixing process, the salinity distribution in the sample es- 

tuary is quite different.  Had we used some method of segmen- 

tation other than Ketchum's, it would have been different from 

any of the above.  For example, the mean T of the estuary 
I 

by the tidal prism method is 1/8. 

1 

I 
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h.k    A mixing-length theory of tidal mixing (Arons and 
Stommel, 1951) 

Consider an estuary of uniform width vv , depth H, 

length L_ .  The origin is placed at the river inflow where 

the salinity is maintained at S * O  .  The *V -axis is dir- 

ected positively downstream.  At the seaward end of the es- 

  ¥ * I ,-v- 

open ocean  S = <T~ . 

The river discnarge is JJ icu. ft/min). The mean 

velocity of water in the channel due to the river is there- 

fore  a - 1>  /***** 

If the length cf the channel is small compared to 

a quarter tidal wave length, the tide will be simultaneous 

and uniform over the entire channel, and we may express the 

height of the tide as £ v J*a &*+• *"^  , where U> is the an- 

gular frequency of the tide. 

The tidal current \J  is obtained from the equation 

of continuity: 

jy/jt «- n*»/** (a 

u Uo s»* ^ 
(2) 

where 

U, r."»*/« 

: 

i ;>; 
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The average tidai displacement, 3 . is obtained 

by integration of the tidal velocity 

f 5© O0at^ (4) 

wiiere 

5c •   -**/« (5) 

We -..ill consider the equation describing the mean 

salinity distribution: 

*s/dt * *•**/** **(* >*/**)/** (6) 

In this equation S is the time mean salinity at 

any point -y\   ,  ^4.is the time mean velocity at *%   ,  wnich we 

may take as that portion of the flow due to the river (that 

iSf^TC-ci    ), and f\  is eddy diffusivity along the *X  -axis. 

»/e express A   in terns of a dinensionless number.^ , a char- 

acteristic velocity which we take at the tidal amplitude \JQ  , 

and a characteristic length which ve take as  2. So   ,   the 

total excursion of u particle due to the tides 

f\ s    2B$.U, 
(7) 
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Tnis form of diffusion equation regards the tides 

as a turDulent. ruction superposed upon the steady river flow 

tnrough the estuary.  The simple assumed fcr.~i of the eddy- 

difl'usivity coefficient is the equivalent of Ketchum's 

assumption of the dimensions of the mixing volume.  It should 

be clear to the reader that the simplicity of both of these 

formulations results from a certain vagueness about the 

physical process involved; the effects of stratification, 

stability, vertical mixing, bottom roughness, and other in- 

fluences are not investigated. 

In the steady state the time derivative vanishes, 

and (6) is integrable 

(8) 

where f  is a constant of integration.  At *X*0  , both S*0 

and A olt /*4 :6 , because there can be no transfer of 

salt up.the river by eddy diffusion; thus the constant of 

integration  £, *• 0 . 

From (3), (5), and (7) we see that n may be ex- 

pressed as a function of ^( 

A- ZB^TT/H* 
(9) 

It is convenient to introduce a dimensionless par 

ameter IL 
(10) 

i 
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to express the distance along the channel in fractions of 

the total length, and a diraensionless parameter 

| 
i 

mi 

which we may call the "flushing number", 

Making these various substitutions in (8) the 

following equation is obtained: 

ps  .    V UsM* 

Integration by separation of variable yields 

the following expression: 

-At r -   F/* +C.' 
At. A*'   , S*v^   f  so that the constant of integration C 

is given by 

£ / •   p- + -A. <r~ 

Therefore, it is possible to write the ratio of mean sal- 

inity to the ocean salinity is exponential form 

The family of curves on the relation /\   to 5/C"" 

is shown in Figure 4.4.1 for the various values of the 

flushing number p" . 

Empirical data for both Alberni Inlet, Vancouver 

Island, and the Raritan Riber, New Jersey, are plotted on 



FIG. 4.4.1 
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this figure. 

The family of carves Is interesting for several 

reasuus:  (1) There is a toe tc the curves near ^ sO 

(2J The curves are vory sensitive to i  in region 0.1 ^ F< 3 0. 

(3) There is a point of inflection at  ^ ? F/2. • 

Convenient alternative forms of the flushing number 

PH1-      ,   DH*T    s _£iLL 

where 1/ is the river discharge, f is the tidal period, y i 

the mean total estuary volume, and r\ is the river discharge 
I 

per tidal cycle. 
* 

The curves presented here were developed for a 

very much idealized situation.  For that reason it is some- 

what surprising and encouraging to find that empirical data 

from actual snrvftys can be plotted on the family with such 

good agreement. 

An attempt to calculate the proportionality fac- 

tor 13 from the data was unsuccessful, the values being of 

an orde^ of ^gnitude different for the two cases.  There- 

fore, it appears that although the shape of the theoretical 

curves is in ''coo agreement with the observations at hand, 

an a priori calculation of the flushing number is not yet 

feasible.  Nevertheless, the flushing number may be a con- 

venient concept to characterize estuaries, just as the fam- 

i iiv of curves themselves is a convenient, sftml-emnirical ex- 

pressjou of the mean salinity distribution. 

s 

" "T 

\ i- 
' I 
I i 
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If the mouth of the estuary is not taken as ^* I 

but some point ^, f Q 4. 7> , <£ / J        further upstream is 

chosen as the end point, then the graph may still be 

drawn, but the flushing number is different.  The sa]inity 

S|  at  A is given by       /    I  \ 
F ('-~) 

xf a new running variable ^T a "T"— is intro- 

duced 

£•<<-+) 

The result of changing the location of the "mouth" is that 

the salinity distribution is still of the same family of 

curves, but with a different flushing number p" * F/^i • 

i 

i 
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4.41 Mixing in estuaries dominated by evaporation and 
precipitation. 

Consider an idealized estuary as described in the 

previous section.  If fc is the evaporation fron the surface 

in Ci'u/sec"^, the rate of change of salinity, 3 , will be 

riven by: c 

In  the  case  cf precipitation,   fc     is negative. 

A current  is  set up  to  compensate for  the  evap- 

orated water 

a.   -£*/H 

The diffusion of salt is governed (as in equa- 

tion 4.4.9) by a coefficient of eddy diffusion 

A -   k** 
wnere 

k _-   z8Z^/HL 

The steady state transfer of the salt transfer 

equation is given therefore by 

L  cL „ i-^S.        E    Us_  + JL s .  O 
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This  may  be  simplified   to  the  form 

where 

This is a  form of Euler's equation. 

By substitution   S"m %   and eliminating the common 

factor  fl'    we  obtain  the algebraic  equation 

(u,-i)   +• a.*** + -6- x d 

the  roots  of which are 

r-  -+,  -I 
The solution of the differential equation is then 

s-  C, *"' + CXK"* 
The boundary conditions are that at^(* £. , S«0 

and also that the net salt flux vanishes, i.e. S *"0—" and 

A £^      **     ^cL 
or _ ^L 

_/      .„.-•*• 

Let & 

D,   * C,L" D,  -  C,L" 
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The equations which determine ^( and ^  are 

fron wnich we obtain   "H, — O .   -A„ * y 

The solution is /? 

•§? - * 

In Figure 4.4.2 this function is plotted against  A 

for various values of *\r.  The quantity, £-, plays the 

role of the flushing number r for estuaries whose salinity 

is governed by a balance between tidal flushing and evapor- 

ation. 

-*•- EH 

4Bf.x«* 
Figure 4.4.3 shows the function plotted for neg- 

ative fc- , that is, for precipitation. 
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2LS    » A*± (2) 

The integral of this equation is: 

J-   -=   a   A (3) 

Sec. U.U2     (Page 1) 

k.42 Uniform mixing along an estuary I 

If the mixing in an estuary ic not caused by the 

tides, but by the wind, for example, the eddy diffusivity f\ 

is not likely to be given by a quadratic law, but may be con- 

stant.  Under these conditions the salt transfer equation is: 

The boundary conditions are that at y*£ , the mouth of 

the estuary S **"* and 

i 

i 
I 
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4.43 kixing i'" a Pillsbury-type estuary 

As shown in Section 6.5 there is a particular 

saape estuary in which the depth is constant, and the 

breadth ia of an exponential shape in which the tidal vel- 

ocity is independent of A , tne position up a::d downstream. 

Llany natural estuaries approximate this shape.  It is of in- 

terest to extend the theory of tidal mixing curves of Sec- 
i 

tion 4.4» which apply to a channel of uniform cross-section, 

to the special case of the Pi11sbury-type estuary channel. 

First of all, the eddy coefficient /\ is constant 

in a Pills bury-type basin because both OA,  and o are both i 

independent of *X 

%0 «   2 ** A* 

Thus the relation given in equation (4.4.7) is changed to 

the following constant form: 

f\   = 4B i*.1, I (JO 
(i) 

The total flux of salt across a transverse section is given 

by 

where . J "     ZTT  I       (see Section 6.5) 



• 

I 
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and the other quantities are defined in Section 4,4.  The 

local ^on-tidal velocity d.  is given by  CL   -  cCx" A^-M- 

where <£/   is  the river discharge. 

Equation (?.)   thus becomes 

Us 
A--M- £ '<&* 

This integrates directly to ccr-*o "V 

— *  £ (3) 

Tnis may be written in a form exactly the same as 

equation (4.4.12)    /      \     \ 

4r-    e 
but in this case "\ . - ^tf / 4~0      and 

where L- j is the distance upstream from the mouth where 

^- s. "ir-p /^ or *C/ is tne distance upstream where •^•'J-^. 

Thus we may use the same family of curves as shown in Fig- 

ure 4.4.1 for the Pillsbury-shaped channel, only r,     and 

^   are redefined. 

For a quick evaluation of the r» it is convenient 

to locate the value of •&•, f^ju   where s
/T~    has some given 

value, say, 0.5.  luble 4.43.1 gives the value of f~f    for 

various values of "/i, at  S" /v- - &* 5 



TABLE 4.43.1 

0.9 6.3 

0.8 2.8 

0. 7 1.6 

A      f. 1.0/4 

0.5 .69 

0.4 .46 

0.3 .21 

0.2 .17 

0.1 .08 

0.05 .037 

0.02 .014 

0.01 .007 

Section  4.43   (Page   3) 

I 

' 
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4- uu    i-!*igg£j c OI horizontal mixing theory:  The Severn 

The data available for the Severn Estuary (7. U) 

is adequate to test the various theories proposed in the 

previous sections.  First of all, it is clear that the Sev- 

ern is an unstratified Type 1 estuary, to which the ideas 

of hori.'oatal mixing ought to apply, if they are correct. 

We will ;oflip"te horizontal salinity distributions on the 

basis of Ketchum's Exchange Ratio, and on the basis of the 

Arons-Stommel theory.  It will be shown that neither of these 

methods work for the Severn.  The inference appears to be 

that the mixing length involved is not even remotely similar 

to the tidal displacement in the Severn, but is more nearly 

the depth. 

The Severn by method of Section 4.31 

The volume of water in the Severn Estuary was com- 

puted from the data given by Gibson (1933).  Figure 4.44.1 

snows the accumulated volume of water from Gloucester to sea- 

ward at high and low water during Spring tides.  For March, 

1940, the average river discharge (Figure 7.11.2) is 2,600 

cusecs, which is equivalent to 1.2x10 ft-Vtidal cycle.  The 

segmentation of the ostuary is started by recalling the defi- 

nition of the /JV-O  segment, ~R0 = r\   , and, using equation 

(4.31.1) the subsequent f^ and v„  volumes may be readily de- 

termined.  The following table summarizes the calculation: 



~~7 
*s  I. 

i > 

TABLE 4.44-1 

<n~ 0 1 2          3 

•p^      xlO"3   = 1,2 89 910 

V^      xl(T8    = 2.2 3.3 92     1000 

R/P. - -f. 3. 0,01 0.001     - 

Ss     
c/oo G 32 32 

From 
7.11. 5       0„%o 0 8 16 

Ocean 

^      ! 

32 

32 

From the results through Segment 2 further calcu- 

lation to the ocean is not warranted. 

The freshness, -j-„ , and salinity, «->A , are the 

average values for the individual segments.  For compari- 

son, the salinities from Figure 7.11.5 during winter spring 

tides are given.  It is evident that the salinities computed 
i 

by the method of Section 4.31 are greatly in excess of those 

observed. 

The Severn by method of Section 4,43 

It is easy to see that Figure 7.11.5 may be 

plotted on a flushing number graph (Figure 4.4.1).  When 

this is done it is found that 3 is of tne o"der of raagni- 
_3 

tude of 10  , for both summer and winter.  The tidal excur- 

sion is of the order of 150,000 feet in the Severn.  The 

mixing length, therefore, is no more than 150 feet.  As a 

result the hypothesis upon which Sections 4 4 to ^,44 is 



I      ' 

 1 1 1 T 1  

VOLUME    OF   WATER   IN   SEVERN    ESTUARY 
FROM    GLOUCESTER    TO   CARDIFF 

SEGMENTATION     AS   DEFINED   IN   SEC. 4.31 
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STATUTE     MILES    BELOW    GLOUCESTER 

FIG.4.44.1 
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based is 3iraply not satisfied,.  The mixing length appears 

to be more certainly related to the depth.  Upon reflection 

the reader will probably agree that this seems more reason- 

abJe anyway.  Instead of the mixing being done by huge hori- 

zontal eddies, several miles in length, the mixing is done 

by small "boils" or eddies resulting from the shearing flow 

over rne oottom.  in order to demonstrate this fact more 

clearly we have considered the Sevorn in more detail. 

The steady state distribution of salinity is a bal- 

ance of diffusion and advection: 

as -     f\ 

where the / -axis is directed downstream, S is salinity, *\. 

is the mean river velocity, and /\ the coefficient of ciffu- 

sivity.  The quantity ^at any X   may be computed from the 

river discharge (^ divided by the width txr*ana depth *• of 

the estuary: •-v i ti 

The diffusivity f\  may be written as 

where Of is the amplitude of the tidal velocity and   is 

the depth. 

In this case 

i 
i 



We computed the ve 

the Severn from this formula 

See lion 4*44 (Pago 4) 

lue of  D at cetera 1 points in 

TABLE 4.44,2 

The Raritan River 

The Raritan River is the chief example given by 

Ketcnum (1950) to illustrate the hypothesis of the exchange 

ratio.  It is interesting to determine the mixing length at 

several stations similar to those discussed by him. 

V/eston 

46.0 

POT f.1 shp«r1 

26,0 

Aust AT»T   \  r* *> V-\ *-» •*• 

(jj"   (feet)xlO' 6,9 5.2 2.1 

OL     I feet} 70 60 50 20 15 

r\jT    (ft/sec) R    C — o   s 8.5 8,5 8.5 8.0 

Winter 

S     (%o) 23 16 8 6 4 

cU\djL (°/ooxioVft) 0.6 0.8 0.8 1.0 1.2 

Summer i 
S      (°/co) 28 27 25 20 

. 18       ! 

eUJcHL{   /ooxl04/ft) 0.2 0.2 

0.7 

0.2 

1.5 

0.8 

9.0 

0.6             I 

5.0 3     winter 0.6 

3      summer 0.3 0.7 3.0 5.0 6.0 

Winter Q  ft^/sec 2600 

Summer   V  ft-vsec 360 • 
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Station {±i   5  miles upstream of South Amboy 

Station (2) South Ambcy 

Station (3) 3 miles downstream of South Amooy 

The river discharge used by Ketchum is 33xlO°ft^/12.5 

hours, or 730 ft^/sec. The tidal velocity is about 1.5 knots, 

or 2.6 ft/sec. 

Station 1 Staticn ? Station 3 

Depth (ft.) 9 12 18 

Width (ft.) 3600 7800 24,000 

S °/oo 10 25 26 

tUfa    °/oo/mi 4.4 0.4 0.2 

Mfo  %0/ft O.VxlO- -3 0.7x10"^ 0.3x10"^ 

Mixing length 
in feet 128 1100 560 

The mixing length is clearly much greater than the 

depth, but not as large as the tidal excursion. 

The reader will see that whereas the mixing length 

in the Severn is of the order of magnitude of the depth, in 

tne Raritan it is much larger, but not nearly as large as 

the tidal excursion. 
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4.45 Horizontal tidal exchange through an inlet. 

A constricted inlet may be expected to act as an 

efficient, tidal excnanger because of the tendency of the 

flow into it to be potential, whereas the flow out is jet- 

like, as indicated in Figure 4.45.1.  As a result, one 

should expect that for 

the most part, the 

water passing through 

the inlet when the 

current reverses is not 

the same as that before 

reversal. 

Let us consider the following simple theoretical 

picture:  an inlet of width A. (Figure 4.45.2).  For sim- 

plicity we assume that 

the depth ^    is uniform 

both in the inlet and 

throughout the estuary. 

The discharge on the ebb 

is from a semi-circular 

region of radius *o~  , and 

amounts therefore to 

*~ £r   D     .  The flow during flood, which occurs in a jet- 
mm 

like  filament of width   OL  ,  and  length *£ ,  amounts  to -*<[^ 

The   total river discharge  for  a  complete  tidal cycle  is  l\   , 

and for simplicity is written as        K  -    **>r *-' 

oc e » *v 

Figure  4.45.2 



The conservation oi mass requires that 
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^•jf-cU    =*r (i) 

The conservation of salt requires that 

(2) 

where   €   is  the   salinity inside  the inlet and   Cls  the 

salinity of  the  ocean.     The  assumption involved  is  that 

on the  ebb  the  portion of  the   jet    C^r   within the  semi- 

circle  ebbs  undiluted,   but  t£at  the remainder of the  ebb 

is water of salinity $   .     Elimination of   £ between 

equation   (1)   and   (2)  results  in  the  following expression 

£ -r- (fr) 
3LM- I 
T.    A. ' 



Section 4.46 (Page 1) 

4.46 Computation of pollution in a vertically mixed estuary 
I  by numerical process ;  

As was seen in Section 4.44, there appears to be 

serious difficulty in applying to an estuary any of the hypo- 

thetical mixing processes discussed in the early sections of 

"this Chapter.  For example, the salinity distribution in the 

Severn estuary did not .seem to fit properly that computed by 

the exchange ratio.  The method of Section 4.44 is always 

open to the objection of the restrictive assumption about the 

geometry of the estuary and the undetermined nature of the 

constant B.  From a practical point of view the proper procedure 

is to use the distribution of river water as a means of discover- 

ing the magnitude of the turbulent diffusion coefficients at 

various places in the estuary, and to devise a method using 

these coefficients which will yield the dilution of pollution 

' 

at any point in the estuary.  An attempt at such a method is de- 

scribed in the following.  It is important to re-emphasize that 

it is intended to apply only to vertically unstratified estuaries 

in which the mixing is due to tides, 
i 

The steady state equations 

Let us consider an estuary such as that shown in 

Figure 4.46.1.  The %  -axis is directed along the axis of the 

channel, the cross-sectional area <j (T()  may vary with the po- 

sition along the axis. 

Now we will suppose that a pollutant, which is mis- 

cible with water, whose average (over a tide) concentration C (yj 

• 

- 
. ' 

- - ' ' 

^ i 
— 

1 
! 

. 
•' 
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varies with "X , is in a steady state distribution in the 

estuary. 

The term steady state means that the average of 

the concentration (2, over a tidal cycle does not change from 

tide to tide.  This will be true if there has been little 

change in the river discharge during the time involved, and 

the discharge of pollutant into the estuary has remained 

constant.  If the total river discharge into the estuary, at 

some point remote in the -J(  direction, is W . then the 

flux of pollutant by advection toward the sea isCJc. 

In addition, there is a turbulent flux due to the 

tidally produced turbulence in the estuary.  This turbulent 

flux may be written in the customary fashion; — O /\       fd^( 

where /\(xj     is a turbulent eddy diffusivity, the value of 

which must be determined before the distribution of the 

pollutant can be calculated.  Contrary to the methods of 

Jietchum, and of Arons and Stommel, we will not specify /"t 

a priori. 

The net seaward flux li^j  of pollutant across 

any section is the sum of these two fluxes. 

£>L<L 

FCK) -GU  - SA^ (11 

If the pollutant is conservative (does not decay with time), 

the net flux /"•"(?(/  must be constant downstream of the 

source of pollutant, and must be zero upstream of it.  Some 
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important pollutants, such as bacterial and atonic pile 

wastes, are not conservative, and their concentrations de- 

cay even when not subject to the dispersing influence of 

tne estuary. 

The concentration of such a non-conservative 

pollutant in an isolated container, nay  decrease with time 

according to the exponential decay lav; 

-*/x 

where   £   is   the  time required  for  the  concentration  to 

decay  from the  concentration    Co  to        .     The   time, ~C , 

is  slirhtly larger  than   the  half-life  of   the  pollutant: 

0.693 T   =   (half life) 

The  net flux,   p (y) ,   cannot  be   the  same 

for all values  of    X    if  the- pollutant is non-conservative, 

but must diminish in  the  following ruanner: 

5*   FL*> T   C (3) 

The steady state equation (1) may be written in 

the following form: 

:[QC-SA^]*T 

•i at outfall 



Section 4.46 (Fage 4) 

i where W     is the total rate of pollutant 3upply at the 

outfall. 

For a given pollutant and given estuary it is 

evident that the quantities Q • S > anc* "£ are known. 

If we can determine/^- , then the distribution of C~(%) 

~.K^..T^  V-~ i   1  .. •> 1 _ *.• J 

Determination of the eddy diffuslvlty _J 

The eddy diffusivity /|  may be computed from 

a knowledge of the concentration of any other property in 

the estuary.  The concentration of fresh water,"TVX I  , is 

a convenient conservative property.  In some estuaries 

where ground-water, or precipitation, or evaporation, is 

important, it might be almost impossible to use the con- 

centration of fresh water as a means of computing f\  . 

Let us suppose for the immediate purpose that all the fresh 

water cornea from one river, ani that little is added or sub- 

tracted by other means. How to treat more complicated 

cases will be evident when the principles for this simple 

case are understood. 

If the concentration of fresh wa^ar, y-  , ie 

written for   in equation (1) we obtain the following form 

of the equation, because in this case p(3f/~ uc 

Q^ZlL (5) 
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:• -The-~cen-centratiori of fresh .wafer, \     , is dimen- 

sionless (e.g., pure fresh water "is represented by 1.0; a 

mixture of one part fresh water, three parts sea water, is 

given by -p = 0.25, etc. ).  The quantity,.;.^", (riv-er dis-^-- 

charge)- has" dimensions of ft^/see; the c~ro3S"-sectiohaT "area, 

ft^; and distance in the X direction., ft.-•- 'Vhn.  dimensions.-. 

of the eddy diffusivity ^ are therefore ft /sec. 

:'^~~~;T        The easiest way to compute f\   is to segment "the 

eatuary along its axis/ the-intervals being equally spaced 

O^ feet apart (Figure. 4.46.2 j". ___ '      ._.1._., 

The average value of 7* is indicatedat each 

segment.  The equation (5) may now be written in finite_<tij£^_ 

ferenc& farm for numerical computation:. =_J..  

In generaX, TH is less than-unit, and -fn^r  is less than 

•f#~t    *,. so that A»*. is expected to" be positive.  The values 

of flu at points far upstream, (where -fh-5 / and -rn-i       "**»••/ ) 

are indeterminate from the fresh water distribution;, this is 

also true beyond the mouth of the estuary, in the ocean. 

Calculation of the concentration of pollutant ^-— 

Equation (4) is written in finitedifference form 

and the various coefficients gathered together 

s^r* 'Q«c, ^ -.,, --,       -»£r«l '- ° 
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where we  have  defined ^     \-» A„S. 

QH" 

1?,= 

2AnS 

*r'a 

-t  ^ 

[a- nn »X 

Equation (7) must hold at each of the segments, 

with one exception.  In addition, there are certain addit- 

ional constraints.  At the ocean, where •£• z- 0 , the value 

of C*0 , and far upstream, c =-a . At the segment where 

the outfall of the pollutant is located one further condi- 

tion is imposed: the difference in flux upstream and down- 

stream must be equal to the total rate of input of pollutant 

1$    .  We may designate the segment at which the source 

(outfall) of polli >nt is nearest as CA,*-S. 

In place of equation (7), which holds at ell 

points except at^'*", we have 

PrC,  + Q* c* ^:cif/ (7») 

The equation:: having been obtained, the solution 

is easily carried through by relaxation methods. 
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Simple example »,.,eji;u&gg: of uniform section 

before proceeding with a numerical example, it 

may be''of interest to consider a simple example to illus- 

trate certai.11 fundamental properties of the problem.  We 

vail choose an example which admits ah ahalyticall solution. 

—•--_— uuuojLUci    cm.    oouu.ci.-L_y    ui     ui.ixxuj.iu   oxuao    o p i> u_ x <J 11 ^. J       , 

which opens abruptly into the sea at ^C~0 .  If the eddj7" 

diffusivity ^ is a constant,, then the concentration of 

f r e-.sh w a t e r. .ha s a. v e r y . s i mp le. anal y t i c al f orm: 

. 7        Q  w 
where.        /^( ' *     A 

AS 
The^ water is'"entirely fresh far upstream _(•£*-/"" )y--Imtr•5* 

diminishes to y**-0 at the mouth, as shown by the dashed 

line in Figure 4.46.3.  In this graph the distance along 

the estuary is plotted in dimensipnless units *X  ( 7. is 

negative within the estuary). 

Now consider the concentration of pollutant due 

to an outfall at ^f * L   .  The analytical solution of equa- 

tion (4) is composed of two separate parts: 

"lies upstream of the outfall 

plies downstream of the outfall 
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<{*uu) 

(9) 

where;-: 

and 

(9'i 

and 

and 
C* 

— i Mi II   jff II 

: t v _ 
AS 

L 

quantity £D is the concentration of pollution which 

would-result at the outfall if there were no diffusion 

or decay, in other words, the simple dilution by river 

flow alone. 

Fig. 4.46.3 displays certain of these solutions. 

The abscissa is expressed in a dimensionless fashion. The 

ocean is located at the extreme right-hand side.  Toward 
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the left is the upstream .dii^Trtionf~' The dashed"lifi-e is 

-the-•so^i^fe|^^-rlL-iha.-e>q:uati.Qii.. J!QV_  the. c^jii^iifcca-tirfBaisj9^==£io&a^ 
 *-.-•-—-h \ 

river water.-J- } .(equation 8)\     The .solutions of the pfob- 

- ler^._of_^the::_distrihnt±Dn;:_oTc:-a- con-servativ-epollutant in tro- 

ouced at       .. __ 

are-shown as soiid^black curves > terminatfh^flFtf the dashed 

nurve at each of the outfall S^aMi^es^e^^^^l^^^-^S^ 

remainder-<^.-the;7SQlution  [downstream of the outfall)   falls 

^l^r?^©^a^Sll!'"ltSf:^    The peak concentration is at the  outr 

-fall;'.; It. is  immediately Clear,   then^^in this  simple  case of 

an estuary of uniformcros^f section, and eddy-diffusivity, 
: that-the'pollution extends far jipstreala of the outfall, no 

jitter what-the ^.cycation of the outfall,  but "that thereon - - 

centrStion is  everywhere reduced upstream, of  the  outfallif. 

the location of the outfall is moved toward the: sea. •--. 

"A seawara^rspla cement of. the outfall ais©-re—: "'-••= 

duces the peak concentration at the- out-fall;,  but "downstream- 

the concentration of a  conservative  pollutant is not affe"c-"~ 

ted by such a displacement, 

. ._•• The" diQ$ffisit~$WVW& in Mgure 4« 4SZ3l5e^?isen4; 

solutions for a -non-conservative pollutant whose"-decay-time" 

for outfall locations at *%     -  -3 and *i.     The- remarkable 

feature  of^Hhese  curves  is  that ~jhe -peak coneentratioji^rieven- 



at tao outfalls, is much reduced from what it it: in the case 

of the conservative pollutant. fhe general equation for the 

peak concentration is as follows: 

{TT^ l~e        /no) 

The non-conservative pollutant extends both up and down- 

stream of the outfall, but. unlike tha conservative pollu- 

tant, can be reduced at a point below the outfall by an. 

upstream displacement of the outfall. 

Consideration of this simple case also shows 

clearly the effect of a change in the river discharge ^J . 

Increase of river discharge increases the fresh water con- 

centration at every position, foreshortens the extent of 

pollution upstream, reduces the peak concentration of pol- 

lution at the outfall, and even reduces the concentration 

of a conservative pollutant downstream. 

Numerical example 

As an example of computation of concentration of 

pollution by numerical methods, e   pai'."i cular distribution 

is computed for the Severn estuary, for which there is rood 

salinity data available (Bassindale, 19'+3).  Stations are 

chosen beginning at Gloucester {*K*-6  ); the sections are 

spaced about two miles apart (^ = 10,000 feet).  Cross- 

section areas are given in Taole Z1./+6.I, in the column 

headed ^^ .  The fresh water concentration, -f^,>  from 

actual summer time survey data, is also tubulated. 
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The  eddy diffusivity,  ^,   is  computed at each 

station by equation  (6)   using a value  of  Q -   360it^/sec 

as  the  fresh water discharge  during the  summer dry period. 

It is  interesting  to note  that  the highest values  of   f\v^ 

occur at stations 6,  7 and 8, which happen to  be  the  lo- 

cation of  the Severn bore. 

Suppose" now  that a pollutant outfall  is located 

at Sharpness   (VMu = 12),  and* that  this  pollutant has a half 

life of-4 days   ( "L =   5xl05sec).     The  coefficients r^ ,Qn, l\n_, 

Of equation   (7)  are tabulated in Table 4.46.1.     An estimated 

distribution of pollutantis  initially entered  into the 

Table,  and  the  sum    J\      (called  the residual)   is formed: 

%tK-l f    £)n<U   + *K* *« + i    *      Q^ (ID 

Equation  (7)  requires  that all residuals except 

that-at the outfall should vanish.     In fact, we  see  that 

this is far from true for  the estimated pollution distri- 

bution.    We  can adjust the values of Cfl   by successtive 

steps   (relaxation method  of Southwell,  1945)   because  it is 

obvious  that if we add b C^ units  to any C^    not only will 

the residual ^(K   be  changed  by  the addition of Qn&C^     but 

also  the residual   ^fl+j will be  increased by^^t &Cyy       and 

the residual "/u.»i     by    l\n-i AC^        :.'    We make  these  adjust- 

ments step by step,  removing the worst residuals first,  and 

from time   to  time  re-computing the residuals from the newly 
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adjusted C»» by equation ill).  When the residuals have 

all been reduced to a point where further readjustments of C M 

are below the precision of the reouircd result (say 

l-/b>  to 5/o) the relaxation procedure nay be regarded as com- 

pleted: namely, we have obtained a set of values of  fi *\ 

which satisfy equation (7). m  the example shown, 54 ad- 

justments of C^ were necessary in all.  The computation 

took about three hours. He  have used arbitrary units for 

Cn and must now convert to units of actual pollution 

concentration. We may suppose that the discharge of pol- 

lutant at station 12 is 10 lbs/sec. The concentration due 

to uiiution by a river flow of 360 ft-Vsec alone (if there 

were no  diffusion or decay) would be, therefore, 28xl0~-*lbs/ft . 

The values of wf  (= 1U lbs/sec) is put into equa- 

tion (7'), 1y/<£.*• should then be equal to the residual X. • 

If all the concentrations in arbitrary units are multiplied 

by 5x10  the value of ^C   comes out properly.  The values 

of the concentration of pollution thus computed are shown 

in the last column of Table 4.46.1. 
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4.51 The effect of controls on the limitation of /nixing: 
"overtaxing".  

There is a curious v.-ay in whicn a control acts to 

limit the possible amount of mixture.  Consider an estuary H 

opening into the ocean without tides) Q through a transition 

I .  If the entire system is sufficiently deep, and the 

O 

river K discharge ( 9% per unit width of the transition) 

is not too great, there is a two layer flow through the 

transition. The depth of the upper layer is determined by 

the method of Section 2.21. If there is no mixing between 

the two fluids, the lower layer is stagnant, and the upper 

layer at J  is entirely fresh. 

Suppose that some agency for vertical mixing of 

the two layers exists in the estuary C. aQ(* that the amount 

of mixing is progressively increased.  The upper layer is 

now somewhat brackish, the discharge of both layers through 

I    is increased, and the interface nearer to mid-depth. In- 

creased mixing in C decreases the salinity difference of 

the two layers at T" , and increases the discharge; but there 

is a point beyond which increased mixing has no further effect 

on either the discharges through or the salinities at  | 

It is natural to suppose that some estuaries will 

be over-mixed in this sense, and that the salinity control 
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will be exercised by the nature of the transition rather 

than by diffusion, horizontal, vertical, or otherwise. 

The criterion for overmixing can be obtained from 

the equation for a stationary interfacial wave (2.21.9'): 

,3 

(i) 

the equation of continuity 

;«*A-/- (2) 

and the equation for the conservation of salt, 

?<*> *A* (3) 

To relate salinity and density we may take a simplified 

equation of  state 

f       -       l+*S 
U) 

Thus 

a   -       f+'fj      &    CL (*%-*•) (5) 

*  s        fL        2       /- A-C**"'' (6) 
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The equation {!)  may now be written in the following form 

| -A^W'j, 

or 

IT 

.   J2EL. + ' -*'H: .i*M.g 

(Iff   .-*:,/!-£)]  3«--/,_y,f -.j 
1—r+ j- -TV 3T/*-' 
~r "7   J  * 

(7) 

(8) 

It is convenient to introduce V = r./s-v j 2* fasx^fy 

yd)* V-7W/-7;3--eO-iV^O-iP-* (9) 

This is an approximation of equation (fc). 

The real roots of ^CV/ ~ °  between -y = o and 

/ cease to exist as 7/—•» / and this point determines 

The value of "*4 at which there 

is a double root occurs when 

7 

3</> 
-  O *3)*^ (10)   J 

I 

If we multiply equation (10) by /*1 and subtract from 

(9) we obtain 

jt( 1-•»)'*'*] *- 1 tin 
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Solving (11)  for   ~>J    and substituting into 

= O 

(13) 

(9) yields 

This can be conveniently rearranged in the form 

As ^^ —*«• oo, ^  >• — .  This means that for 

weak river flows in estuaries with large transitions the 

overmixing leads to an interface at half depth.  In order 

to investigate approximately the effect of ^<oc>   we 
i 

introduce  £ = °^ *" 2.    ; £- is a small quantity as long 

as Jc,  is large.  Substituting this into equation (13) 

and retaining only the large terms we obtain 

For large values of /C the roots of this expression 

are approximately 

(14) 

£    - 
3/7w (15) 

In this way we can evaluate in states of overmixing 

at what values of j£.  the quantity <^ deviates signif- 

icantly from 1/2.  The ratio of salinities of the 
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layers, v , upper and lower layers, v , is given by 

i) -- yjy* 

? / i 
ir* (!•*•*•) 
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4.52 Experimental study of overmixing 

.Two.....sets..of-runs- were made- past a ^transition to 

test ttre theory of overmixing.  The transition was a narrow 

segment of width W, opening to full width of the channel 

both upstream and downstream.  The length of the narrow sec- 

tion was 42 cm in series G-, and 100 cm in series H,  Sample 

runs are summarized in Table 4. 52.1 _afld.,Iigure 4.52.1.  In 

all runs the total depth Jj/   was 31.5 cm> jflfo is the river 

discharge per unit width of the transition. po   is the den-:: 

sity of_riVer,.discharge; P\  the -density .of the overmixture-; 

^thi density "Of "the sea-water. -|^ is defined as 

iL'2.-^'.' -: f>--fj- •-•  
^and~-f|/£, Us^  oomputed fromvfche ^theory of Section 4*^1.     The 

data-Asj plotted' In WS^^^^^;^^^^^i^^^^^^^r^^m&^f~- 

T;he  triangles are rl     sexl&s jVthe  square  is the only run 

\Qr*-(>    ) where. £, is o£ sen&ible  order of magnitude^ 



TABLE 4.52.1 

Overmixing experimental runs 

*• 
W, 

Hun      cm /sec     cm 
/• fi ?- 1)     -Oc 

G-l 1. •* « 8. 7 1.01^0 1.0213 1.0259 ./;« 

-3 14.5 8.7 1.0170 1.0233 1.0259 .71 .77 

-4 14.5 8.7 1.0000 1.0214 1.0259 .81 .82 

-5 1.5 8.7 1.0000 1.0243 1.0259 .94 .95 

-6 145.0 8.7 1.0000 1.0097 1.0259 .37 .36 

-7 0.7 17.7 1.0000 1.0247 1.0259 .93 .97 

-8 7.1 17.7 1.0000 1.0229 1.0255 . 86 .90 

-9 43.0 17.7 1.0000 1.0171 1.0255 .66 .67 

-10 7.1 17.7 1.0170 1.0239 1.0255 .78 .85 

-11 43.0 17.7 1.0170 1.0212 1.0255 .50 .52 

H-l 0.7 17.5 l.OUUO 1.0240 1.0248 .9v .97 

-2 7.1 17.5 1.0000 1.0221 1.0248 .88 .90 

-3 71.0 17.5 1.0000 1.0140 1.0248 .56 .57 

-4 0.5 27. C 1.0000 1.0248 1.0250 .99 .98 

-5 4.6 27.2 1.0000 1.0230 1.0250 .92 .92 

-6 46.0 27.2 1.0000 1.0160 1.0250 .64 .65 
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J+r53 Influence of tidal currents on overmixTrig 

Four tests were made In which a tide was imposed- 

on the overmixed condition.  Figure 4.53.1 shows the result 

of these experiments.  In test 2, with the two minute tidal 

period, and test .X>  the sea water of density^.y>v • ..Is-_swept-.._' 

out of^the transition for a portion of~the tidal cycle and 

there is a reversal of flow in the upper layer.  It is eva-"" 

dent that serious dlsagreemeht:7-in"the P^  of the steady 

~Hiid unsteady state tests ls^ not experiences until-^test 4~.~ 

In this-test the surface profile was distorted by a-bore 

and there was ire(verticals stratification. 
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U. 54 Overmixing in actual estuaries 

The only type of estuaries to which the concept 

of overmixing can properly be applied are those which are 

vertically stratified and in which there is evidence of a 

net flow (averaged ever a tidal cycle, downstream in the 

upper layer, and a not upstream flow in the bottom layer, 

it is important nor. to atter.pt to apply this hydraulic con- 

dition to vertically mixed estuaries, such as the Haritan 

River, Delaware Bay, Bristol Channel-Severn estuary, where 

it does not appear that tnere is any hydraulic control ac- 

tion at the mouth. 

Not all vertically stratified estuaries are 

likely to be overmixed.  Rather obvious examples are Alberni 

Inlet, which is too deep to be thoroughly mixed by tides, 

and the Mississippi River passes, in which the tidal action 

is too small.  However, in estuaries where there are tides 

of several feet or more, and the depth is not more than about 

ten meters, it is reasonable to suppose that overmixing may 

occur: that is, the salinity of the estuary upstream of a 

transition is determined by the control or "throttling" ac- 

tion of the transition on the two layer flow through it, and 

not by the magnitude of large scale horizontal turbulent ex- 

change in the 3ense of Ketchum (195D and Arons-Stommel (1951). 

Hachey (1939) has summarized the data available on 

the salinity of the upper layer in St. Johns Harbor. (New 

Brunswick, Canada).  The difference of salinity of the upper 
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and lower layers is plotted as a function of river discharge 

in Figure 4o4.i.  The straight line is computed from equation 

(4. 51.11) on the supposition that the abrupt widening at the 

mouth of the harbor acts as a control, that the width of the 

cnannel is 2,000 feet, the depth of the water is 30 feet, and 

that the mixing action of the reversing falls upstream is so 

efficient that overmixing occurs.  Considering the crude na- 

ture of both the theory and data, the agreement is fairly 

good, and the conclusion is that the St. Johns harbor is over- 

mixed. 

Data on the dependence of stratification at the 

mouth of an estuary upon the river discharge is difficult to 

find in the literature.  Very fragmentary data suggest that 

the following estuaries may bo overmixed: 

St. Johns River, Jacksonville, Fla. 
Columbia River, Oregon 
Savannah River, South Carolina 
New Waterway, Holland 
New York Harbor, N. Y. 

It is suggested that in future surveys of estuaries 

where the possibility of overmixing exists, considerable de- 

tailed survey work be done on sections likely to exert control 

action.  The observations should give vertical salinity and 

temperature soundings over a complete tidal cycle for several 

different stages of river discharge throughout the year.  Con- 

struction of a graph, such as shown in Figure 4.54.1 will im- 

mediately determine whether or not the condition of overmixing 

exists in a particular estuary. 
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4.6 Salinity distribution in the Type 2 estuary 

Let S, and 5j. denote the salinity of the top and 

bottom layers respectively; 0, and Jpv denote the discharges 

per unit width; UK*, be the vertical entrainment velocity 

through the interface; and K. the coefficient of turbulent 

exchange.  The equations of salt conservation may be written 

The laws of mass conservation are expressed in the 

following relations: 

It is generally convenient to use 9^ as the inde- 

pendent, variable, and to write sv\    s.     KfUJ^ 

•  <*#< ' (3) 

The integrals are simply 

(4) 

z. 
rf 



""*"* 
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whore   (_ and   /are   constants  of  integration and    90 is 

tiie  discharge  of  the  ri /or per ur.it width of  the  channel. 

fho   salinity  of  the  ooeun  is *J      .      The  discharge at  the 

;noutij ii,ay   be written        55^vt       »  hence   ^^ - -"ft^, +9 ot  the 

couta.     It   is  convenient  to   introduce      o.   •«    <?, /<»„   and 

/2v   -   ?u /V   or niere  simply P-t.   *   / - j>, Thus 

(5) 

In order to illustrate the properties of these 

solutions, a numerical example is worked out.  It is 

assumed that the discharge of the upper layer at the r.outh 

is ten times the discharge of the fresh river water at the 

head of the estuary; the results of the computation for 

are shown in Figure 4.6.1. various values of S*j     a: 



Fig.   4.6.1 
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4.61 Example:  James giver 

An example of the mixing processes in a Type 2 

estuary is obtained from rritchard's (1951) special study 

of the James River (see Section 7.23/.  Figure 4.61.1 shows 

the moan salinity-depth curves at three stations, the es- 

tuary is clearly Type d,  as shown in Figure 7.0.2.  Figure 

4.61.2 shows the mean ebb and flood velocities for three 

periods in the James estuary.  Figure 4.61.3 shows the 

total mean velocity-depth curves for each period.  If we use 

the customary right-handed coordinate axis, wi In */directed 

downstream, W cross stream, 4fc upward, and denote the instan- 

taneous velocity components as it, *W fc*<r* ; the salt transfer 

equation (omitting molecular diffusive transfer) is: 
i 
1 

sr = ~h (^-x- (""> ->r W '>' 
Each term may be separated into two terms of the 

form:    A =  A + A ' 

where A is tne time mean, and A the instantaneous devi- 

ation from the mean.  Pritchard (195U calls r\    a random 

term, but this term is more nearly a periodic term.  Tak- 

ing the time mean of equation (1) results in the following 

well known form: 

IE ... si)X-&$£ -&}£ 
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The right hand member is composed of three advection terms 

and three eddy diffusion terms.  The equation may also be 

written in the eouiva.lent form: 

6t ** Zy, dt 

<h*>£*W£*&A& 
(3) 

>> 

(In the case of a Type 1 estuary the only possible terms 

in the right nand member are the first and fourth, and we 

are reduced to tne case discussed in Sections 4.4 and 4.43). 

Pritchard has made a numerical study of these 

various terras in the James estuary to discover their magni- 

tudes, and takes only near: values with respect to the cross- 

stream coordinate^. .  The equation (2j may be written in 

the form: 

il =.-<CZ2£ - <2-}f- J- (<*'*') - 2- fur's') 
(4) 

Mr ~t**U& 

where <^L is the breadth of the channel (a function of ^ )• 

The terms U , *Gf&1( taS/c^   are computed from 

a series of observations as functions of / and 5L .  The 
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mean vertical velocity**r i3 computed from the field of *£ 

by mass continuity, and t*\e results shown in Figure J*.6l.4. 

The advective terms of equation (4), & S-T/^'Xand «T4*/&\. 

may now be computed.  Vertical integration of the equation (4) 

permits evaluation of  M'U'J //d> and then (ur'*')   may be 

computed. 

I'ritchard's field program was unuertaken during a I 

period when {%&/bt\ < 1°          "7ro    ***-'' .  The i 

term <jji  ^T/j-X   varied from about 5xlO~5 °/oo sec~l in 

the upper layer, to -5x10*"? o/00 in the bottom layer.  The 

term iff-'3')/«?(  was negligible, le3s than 10~7 °/oo sec-1. 

The vertical advective term, *w  **fnxr    Was of the order 

of 10_5 o/OG 3ec
_1.   

The vertical eddy flux term a (ur s  V/«K   was 

of the order of -4x10"5 °/oo sec-1 in the lower layer.  The 

vertical distribution of the vertical eddy flux of salt 

fur's')   is shown in Figure 4.61.5.  Since some of the stations 

were taken at different phases of the noon, the values of 

eddy flux as functions of tidal velocity nay be computed, 

Figure 4.61.6. 

A rough comparison with Section 4.6 :nay be made. 

At the halociine the value of (*•%>*.   is about 4xlO~5 ft/sec. 

The value of the eddy flux (Ur'$  / at the halociine, (or 

-K^S|-it) ^JX  equation (4.6.1 j, is approximately 40xlO"5 °/oo 

ft/aec.  From Figure 4.61.1 we can see that the value of 

( ?t - *v. ) is nearly -2 °/oo.  Thus, "J   , as defined in Sec- 
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tion 4.6,  has a yalue  of  about  5.     The salinity distribution 

for  *i —&     ,   in rigure  4.6.1 resembles  that of  the  James es- 

tuary. 

It is  interesting  to  try  to  compute   the  value  of  U/% 

at  the  halocline from Keulegan's  formula  for mixing.     From 

Figure 4.61.2 we see  tnat    XJt   *   0.3 ft.   sec"^- and that this 

is well above     Ut «    0.0? ft.   sec-1.     Hence,   by equation 

(4.8.2)   the   value  of u/^is computed  to  be u/^w   8xlO~^  ft. 

sec~l, whereas  the  observed  value,  according to Figure 4.61.4 

is more nearly «*C^=  4zlO"5 ft.   sec~l. 

s 

- 
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placement is a horizontal displacement  Au-*tyT .  A hor- 

izontal diffusivity may be expressed as: 

A, *   (V, - w)L r 
and since 

A 

' 

Section 4.62 (?a,*e J.) 

4.62 A relation between estuaries with horizontal mixine 
and with vertical mixing   

The salinity distributions shown in Figures 4.6.1 

and 4.4.1 look very similar, but come about as the results 

of two entirely different models.  The writer is of the 

opinion that there is a fundamental equivalence between the 

two models.  Dr. Henry Kiersteed pointed out that this 

equivalence may be interpreted in the following way. 

Consider a two-layer system in which the velocity 

of the two layers are 4tf     and ^v .  Suppose that the mean 

velocity is /U-      .  Particles which move randomly in the 

vertical will have a downstream drift of IU* .     If the eddy 

vertical velocity of the particles is UW   and they travel 
i 

on the average the entire depth &L   ,   then a vertical eddy 

diffusivity describing the flux of particles is of the form 

/\ft ~ uroL 
In moving up and down the particles spend a time £*in each 

i 
layer on tne average, so that associated with vertical dis- 

' • -' -• • 
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The remarkable fact is that n* - and fik,are inversely propor- 

tional.  Thus large vertical turbulence confines a pollutant 

to a particular horizontal position which moves only with 

drift velocity «JE . 

Another way of showing this odd equivalence is to 

integrate vertically the results of Section 4.6, and reform- 

ulate them into a single equation of the type of Section 4.4. 

For simplicity's sake we consider only the case, which is 

often realized in Type 2 estuaries, in which the two layers 

are of equal depth:   ^, s    Jj±  ~      *£/2. 

The vertical average of salinity S" is thus 

s    = (S,  +Si)/Z 
The average velocity is 

From equation (4.6.4) 

S 

and 

If we write an equation analogous to (4.4.8) 

the quantity 

dC 

A*' /• hJi 
UK. {y, -c+i)/*) 

• : 
i 

! 

i • •**• 

! 
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For large values of 

simply 
7 ana /, and 9     the equation is 

which is similar to the expression obtained by the elementary 

particle analysis above. 

An important corollary of this inverse rclo.tion 

between /\   and A^ is that the greater the tidal currents, 

the fresher tha estuary.  It should be very interesting to 

discover whether in fact an estuary of Type 2 is freshened 

by spring tides, but an estuary of Type 1 is made more saline, 

! I 

. 
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4.8 Interfaclal mixing 

The phenomenon of mixing across a sharp interface 

is peculiar in that it is not a "two way" mixing of the 

type described by the usual theoretical treotments of tur- 

bulence, but is a "one way" process.  3o far as this writer 

knows, the only study of this type of mixing is that by 

Xeulegan (1949), who points out that two forms of interfacial 

mixing may occur:  "In one form, the interface may be identi- 

fied as the dividing surface of two layers of liruid with dif- 

ferent densities, the surface being one of sharp discontinu- 

ity of densities but not necessarily of velocities.  Ordinar- 

ily the interface of this type is the locale of internal waves 

if the difference in velocities at points on opposite sides of 

the interface and at some distance from it is large.  If mix- 

ing is present, it is in the form of eddies that are period- 

ically ejected from the crests of the waves into the current 

that has ILe greater velocity.  In the other form, the inter- 

face is a layer of transition between two currents.  Both the 

densities and the velocities change uniformly in the layer 

that has measurable thickness.  If any mixing is present, it 

is associated with the momentum exchange of turbulence, and 

the regular pattern of internal waves is absent." 

Keulegan's study (1949) of mixing of the first form 

was made in three flumes in which the upper layer of fluid was 

recirculated many times over the lower layer of heavier fluid, 

! 

- 
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The mechanism of mixing was the breaking of the crests of 

interfacial waves into the moving upper layer. 

(?TD 

form 

A criterion of mixing has been obtained in the 

»/i 

9 = C** (-fj£A) M (1) 

where subscripts refer to the two fluids in the usual way, 

and Vv is tne kinematic viscosity of the lower fluid. 

The value of &  appears to be about 0.178 in tne 

turbulent region ( XXPt/^i  >  450). 

Keulegan defines the amount of mixing for vel- 

. • 

ocities above the cretical in the same fashion as we have 

defined U^ (Section 3.1, page 6). 

The law for mixing is of the form 

ur^ =   ?.r *«>-*  (U- iis"Ui) (2) 

"The bearing of the results of the present in- 

vestigation on the interfacial mixing occurring in large 

bodies of water in stratified flow must be discussed. 

'•w~ • 

'In the laboratory experiments, where relatively 
-  ..,- 
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short flukes are used and one of the liquids, the lower or 

the upper, is at rest, and the other i3 in motion, the 

state of the interface is one of discontinuity of density. 

In the case when the lower heavy liquid moves, it will be 

supposed tiist the flow has continued for a long time and 

that the characteristic wave front is absent.  Under these 

conditicas, the interfacial stability, the critical vel- 

ocity of mixing, and the mixing for velocities above the 

critical, may be studied.  All these, however, refer to a 

reach that is to be looked upon as a type of initial length, 

"In the phenomenon transpiring in natural environ- 

ments and thus involving large bodies of water in stratified 

flow, it may be assumed that conditions arise so that in- 

itial reaches are established.  It is expected that the 

changes taking place in the initial length will be similar 

to those observed in a laboratory.  What is not known def- 

initely in this respect is the direct applicability ol the 

results' to be obtained in a laboratory investigation to the 

prototype magnitudes.  Certainly, however, a qualitative 

similarity, at least, must exist. 

"If that is granted, the application of the lab- 

oratory results must be restricted to a very short reach, 

which will be viewed as the initial reach. Beyond this in 

the remaining reach, which will be of considerable length, 

the conditions for mixing and the manner of mixing will oe 

of a different type, obeying different laws.  For the mix- 
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ing in the initial reach will establish in the following 

adjoining reach a transition layer between the liqjids, and 

in this transition layer the density will vary continuously. 

As an illustration of how this can be Drought about, we may 

visualize the following situation.  A current of fresh water 

of depth /-/ is flowing with a uniform velocity over a pool 

of heavier liquid.  In places in the initial length, por- 

tions of licuid coming from the lower pool will spread them- 

selves in the upper current only gradually.  Let it be sup- 

posed that the spreading is proportional to time, this being 

measured from the instant of departure from the lower licuid. 

The density gradient established for this case can be ob- 

tained readily.  Taking the instant when the spreading is com- 

pleted and the area covered is a square of sides of length (| > 

the concentration along a vertical may be represented by 

C *    A + B/fr- 
for finite distances away from the interface. 

"Now, the actual law of spreading for a given ac- 

tual case may not be as simple as in the above illustration. 

As long as it is assumed that spreading of liquids elected 

from below into the upper current and in the initial length 

is gradual, a qualitatively similar law for the concentra- 

tions as the one mentioned above will be expected.  But these 

distributions eiuply the existence of transition layers.  Where- 

as the mixing in the case of sharp interfaces is brought about 



Section 4.8 (Puge p) 

by the ejection of eddies at the crests of the internal 

waves, the mixing through the transition layers must be 

associated with the momentum exchange of turbulent motion. 

This is a matter to be approached using the basic ideas of 

the Prandtl and Richardson criterion for mixing and is, 

tnerefore, a subject outside the scope of the present in- 

vestigation. " 
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4.9 Measurements of microturbulence in estuaries 

In the theories presented in earlier sections of 

this chapter, the turbulent elements responsible for trans- 

fer of properties have been considered to be of a tidal 

period.  If such processes are said to be associated with 

"macroturtulence" then we may call turbulent fluctuations 

of period nuch less than a tidal period "microturbulence". 

There have been few direct rr.easurer.ents of microturbulence 

in estuaries. 

Thorade (Rapports et Proces-verbaux, Cons. Per. 

Intern. l'Explor d.1. Mer 76, 1931) discusses work of 

Rauschelbach who measured velocity continuously in the iilbe 

at about mid-depth (total depth 8 m.).  Turbulent fluctuation 

of 300 second period, with amplitude of about 10 cm sec" , 

occurred superposed on a mean velocity of about 20 cm sec •*-. 

Bowden and Proudman (Proc. Roy. Soc. A. 199> pp. 311-327) 

have made an extensive set of observations in the Mersey, 

and found two periods of fluctuation: (i) a short period 

fluctuation of a period of about 5 seconds; (ii) a longer 

period fluctuation of about 90 seconds.  In both cases the 

ratio of amplitude of the turbulent fluctuation to the mean 

velocity is of the order of 0.1 (independent of mean current). 

A positive picture of the physical nature of the eddies (or 

waves?) responsible for these fluctuations has not evolved, 

nor do we know taeir role in the transport processes.  Much 

observational work remains to be done in this direction. 
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